Mass estimation method for intelligent vehicles based on fusion of machine learning and vehicle dynamic model

Author:

Yu Zhuoping,Hou Xinchen,Leng Bo,Huang Yuyao

Abstract

AbstractVehicle mass is an important parameter for motion control of intelligent vehicles, but is hard to directly measure using normal sensors. Therefore, accurate estimation of vehicle mass becomes crucial. In this paper, a vehicle mass estimation method based on fusion of machine learning and vehicle dynamic model is introduced. In machine learning method, a feedforward neural network (FFNN) is used to learn the relationship between vehicle mass and other state parameters, namely longitudinal speed and acceleration, driving or braking torque, and wheel angular speed. In dynamics-based method, recursive least square (RLS) with forgetting factor based on vehicle dynamic model is used to estimate the vehicle mass. According to the reliability of each method under different conditions, these two methods are fused using fuzzy logic. Simulation tests under New European Driving Cycle (NEDC) condition are carried out. The simulation results show that the estimation accuracy of the fusion method is around 97%, and that the fusion method performs better stability and robustness compared with each single method.

Funder

National Natural Science Foundation of China

Shanghai Municipal Science and Technology Major Project

Fundamental Research Funds for the Central Universities

Publisher

Springer Science and Business Media LLC

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3