Author:
Su Yifan,Liu Feng,Wang Zhaojian,Mei Shengwei,Lu Qiang
Abstract
AbstractIn generalized Nash equilibrium (GNE) seeking problems over physical networks such as power grids, the enforcement of network constraints and time-varying environment may bring high computational costs. Developing online algorithms is recognized as a promising method to cope with this challenge, where the task of computing system states is replaced by directly using measured values from the physical network. In this paper, we propose an online distributed algorithm via measurement feedback to track the GNE in a time-varying networked resource sharing market. Regarding that some system states are not measurable and measurement noise always exists, a dynamic state estimator is incorporated based on a Kalman filter, rendering a closed-loop dynamics of measurement-feedback driven online algorithm. We prove that, with a fixed step size, this online algorithm converges to a neighborhood of the GNE in expectation. Numerical simulations validate the theoretical results.
Publisher
Springer Science and Business Media LLC
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献