Author:
Oetter Nicolai,Pröll Jonas,Sievert Matti,Goncalves Miguel,Rohde Maximilian,Nobis Christopher-Philipp,Knipfer Christian,Aubreville Marc,Pan Zhaoya,Breininger Katharina,Maier Andreas,Kesting Marco,Stelzle Florian
Abstract
Abstract
Objectives
Confocal laser endomicroscopy (CLE) is an optical method that enables microscopic visualization of oral mucosa. Previous studies have shown that it is possible to differentiate between physiological and malignant oral mucosa. However, differences in mucosal architecture were not taken into account. The objective was to map the different oral mucosal morphologies and to establish a “CLE map” of physiological mucosa as baseline for further application of this powerful technology.
Materials and methods
The CLE database consisted of 27 patients. The following spots were examined: (1) upper lip (intraoral) (2) alveolar ridge (3) lateral tongue (4) floor of the mouth (5) hard palate (6) intercalary line. All sequences were examined by two CLE experts for morphological differences and video quality.
Results
Analysis revealed clear differences in image quality and possibility of depicting tissue morphologies between the various localizations of oral mucosa: imaging of the alveolar ridge and hard palate showed visually most discriminative tissue morphology. Labial mucosa was also visualized well using CLE. Here, typical morphological features such as uniform cells with regular intercellular gaps and vessels could be clearly depicted. Image generation and evaluation was particularly difficult in the area of the buccal mucosa, the lateral tongue and the floor of the mouth.
Conclusion
A physiological “CLE map” for the entire oral cavity could be created for the first time.
Clinical relevance
This will make it possible to take into account the existing physiological morphological features when differentiating between normal mucosa and oral squamous cell carcinoma in future work.
Funder
Universitätsklinikum Erlangen
Publisher
Springer Science and Business Media LLC
Reference26 articles.
1. Johnson DE, Burtness B, Leemans CR, Lui VWY, Bauman JE, Grandis JR (2020) Head and neck squamous cell carcinoma. Nat Rev Dis Primers 6(1):92. https://doi.org/10.1038/s41572-020-00224-3
2. GBD 2015 Disease and Injury Incidence and Prevalence Collaborators (2015) Global, regional, and national life expectancy, all-cause mortality, and cause-specific mortality for 249 causes of death, 1980–2015: a systematic analysis for the global burden of Disease Study 2015. Lancet 388(10053):1459–1544
3. GBD 2015 Disease and Injury Incidence and Prevalence Collaborators (2016) Global, regional, and national incidence, prevalence, and years lived with disability for 328 diseases and injuries for 195 countries, 1990–2016: a systematic analysis for the global burden of Disease Study 2016. Lancet 390(10100):1211–1259. https://doi.org/10.1016/s0140-6736(17)32154-2
4. Andre K, Schraub S, Mercier M, Bontemps P (1995) Role of alcohol and tobacco in the aetiology of head and neck cancer: a case-control study in the Doubs region of France. Eur J Cancer B Oral Oncol 31b(5):301–309. https://doi.org/10.1016/0964-1955(95)00041-0
5. Lingen MW, Kalmar JR, Karrison T, Speight PM (2008) Critical evaluation of diagnostic aids for the detection of oral cancer. Oral Oncol 44(1):10–22. https://doi.org/10.1016/j.oraloncology.2007.06.011