Effects of storage and toothbrush simulation on Martens hardness of CAD/CAM, hand-cast, thermoforming, and 3D-printed splint materials

Author:

Rosentritt Martin,Hickl Verena,Rauch Angelika,Schmidt Michael

Abstract

Abstract Objectives To investigate Martens hardness parameters of splint materials after storage in liquids and toothbrush simulation. Materials and methods Ten specimens per material and group were fabricated (hand-cast CAST, thermoformed TF, CAD/CAM-milled CAM, 3D-printed PS, PL, PK, PV), stored in air, water, coffee, red wine, and cleaning tablets and investigated after fabrication, 24 h, 2- and 4-week storage or toothbrushing. Martens hardness (HM), indentation hardness (HIT), indentation modulus (EIT), the elastic part of indentation work (ηIT), and indentation creep (CIT) were calculated (ISO 14577-1). Statistics: ANOVA, Bonferroni post hoc test, between-subjects effects, Pearson correlation (α = 0.05). Results HM varied between 30.8 N/mm2 for PS (water 4 weeks) and 164.0 N/mm2 for CAM (toothbrush). HIT values between 34.9 N/mm2 for PS (water 4 weeks) and 238.9 N/mm2 for CAM (toothbrush) were found. EIT varied between 4.3 kN/mm2 for CAM (toothbrush) and 1.8 kN/mm2 for PK (water 2 weeks). ηIT was found to vary between 16.9% for PS (water 4 weeks) and 42.8% for PL (toothbrush). CIT varied between 2.5% for PL (toothbrush) and 11.4% for PS (water 4 weeks). The highest impact was identified for the material (p ≤ 0.001). Conclusions Storage and toothbrushing influenced Martens parameters. The properties of splints can be influenced by the choice of materials, based on different elastic and viscoelastic parameters. High HM and EIT and low CIT might be beneficial for splint applications. Clinical relevance Martens parameters HM, EIT, and CIT might help to evaluate clinically relevant splint properties such as hardness, elasticity, and creep.

Funder

Universitätsklinikum Regensburg

Publisher

Springer Science and Business Media LLC

Subject

General Dentistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3