Effect of multiple firings on optical and mechanical properties of Virgilite-containing lithium disilicate glass-ceramic of varying thickness

Author:

Rizk AmrORCID,Abdou AhmedORCID,Ashraf Reem,Omar Sarah

Abstract

Abstract Objectives To investigate the effect of multiple firings on color, translucency, and biaxial flexure strength of Virgilite-containing (Li0.5Al0.5Si2.5O6) lithium disilicate glass ceramics of varying thickness. Materials and methods Sixty discs were prepared from Virgilite-containing lithium disilicate blocks. Discs were divided according to thickness (n = 30) into T0.5 (0.5 mm) and T1.0 (1.0 mm). Each thickness was divided according to the number of firing cycles (n = 10); F1 (Control group): 1 firing cycle; F3: 3 firing cycles, and F5: 5 firing cycles. The discs were tested for color change (ΔE00) and translucency (TP00) using a spectrophotometer. Then, all samples were subjected to biaxial flexure strength testing using a universal testing machine. Data were collected and statistically analyzed (α = 0.5). For chemical analysis, six additional T0.5 discs (2 for each firing cycle) were prepared; for each firing cycle one disc was subjected to X-ray diffraction analysis (XRD) and another disc was subjected to Energy dispersive X-ray spectroscopy (EDX) and Scanning electron microscope (SEM). Results Repeated firing significantly reduced the translucency of F3 and F5 compared to F1 in T0.5 (p < 0.001), while for T1.0 only F5 showed a significant decrease in TP00 (p < 0.001). For ΔE00, a significant increase was recorded with repeated firings (p < 0.05) while a significant decrease resulted in the biaxial flexure strength regardless of thickness. Conclusions Repeated firings had a negative effect on both the optical and mechanical properties of the Virgilite-containing lithium disilicate glass ceramics. Clinical relevance Repeated firings should be avoided with Virgilite-containing lithium disilicate ceramics to decrease fracture liability and preserve restoration esthetics.

Funder

King Salman International University

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3