Bacterial translocation and microgap formation at a novel conical indexed implant abutment system for single crowns

Author:

Gehrke PeterORCID,Burg Simon,Peters Ulrike,Beikler Thomas,Fischer CarstenORCID,Rupp Frank,Schweizer Ernst,Weigl Paul,Sader Robert,Smeets Ralf,Schäfer Sogand

Abstract

Abstract Objectives A conometric concept was recently introduced in which conical implant abutments hold the matching crown copings by friction alone, eliminating the need for cement or screws. The aim of this in vitro study was to assess the presence of microgap formation and bacterial leakage at the Acuris conometric restorative interface of three different implant abutment systems. Material and methods A total of 75 Acuris samples of three implant-abutment systems (Ankylos, Astra Tech EV, Xive) were subjected to microbiological (n = 60) and scanning electron microscopic (SEM) investigation (n = 15). Bacterial migration into and out of the conical coupling system were analyzed in an anaerobic workstation for 48, 96, 144, and 192 h. Bacterial DNA quantification using qrt-PCR was performed at each time point. The precision of the conometric coupling and internal fit of cemented CAD/CAM crowns on corresponding Acuris TiN copings were determined by means of SEM. Results qrt-PCR results failed to demonstrate microbial leakage from or into the Acuris system. SEM analysis revealed minute punctate microgaps at the apical aspect of the conometric junction (2.04 to 2.64 µm), while mean cement gaps of 12 to 145 µm were observed at the crown-coping interface. Conclusions The prosthetic morse taper connection of all systems examined does not allow bacterial passage. Marginal integrity and internal luting gap between the ceramic crown and the coping remained within the clinically acceptable limits. Clinical relevance Conometrically seated single crowns provide sufficient sealing efficiency, relocating potential misfits from the crown-abutment interface to the crown-coping interface.

Funder

Johann Wolfgang Goethe-Universität, Frankfurt am Main

Publisher

Springer Science and Business Media LLC

Subject

General Dentistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3