Evaluation of an artificial intelligence–based algorithm for automated localization of craniofacial landmarks

Author:

Blum Friederike Maria Sophie,Möhlhenrich Stephan Christian,Raith Stefan,Pankert Tobias,Peters Florian,Wolf Michael,Hölzle Frank,Modabber Ali

Abstract

Abstract Objectives Due to advancing digitalisation, it is of interest to develop standardised and reproducible fully automated analysis methods of cranial structures in order to reduce the workload in diagnosis and treatment planning and to generate objectifiable data. The aim of this study was to train and evaluate an algorithm based on deep learning methods for fully automated detection of craniofacial landmarks in cone-beam computed tomography (CBCT) in terms of accuracy, speed, and reproducibility. Materials and methods A total of 931 CBCTs were used to train the algorithm. To test the algorithm, 35 landmarks were located manually by three experts and automatically by the algorithm in 114 CBCTs. The time and distance between the measured values and the ground truth previously determined by an orthodontist were analyzed. Intraindividual variations in manual localization of landmarks were determined using 50 CBCTs analyzed twice. Results The results showed no statistically significant difference between the two measurement methods. Overall, with a mean error of 2.73 mm, the AI was 2.12% better and 95% faster than the experts. In the area of bilateral cranial structures, the AI was able to achieve better results than the experts on average. Conclusion The achieved accuracy of automatic landmark detection was in a clinically acceptable range, is comparable in precision to manual landmark determination, and requires less time. Clinical relevance Further enlargement of the database and continued development and optimization of the algorithm may lead to ubiquitous fully automated localization and analysis of CBCT datasets in future routine clinical practice.

Funder

RWTH Aachen University

Publisher

Springer Science and Business Media LLC

Subject

General Dentistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3