Composite grafts made of polycaprolactone fiber mats and oil-based calcium phosphate cement pastes for the reconstruction of cranial and maxillofacial defects

Author:

Fuchs Andreas,Bartolf-Kopp Michael,Böhm Hartmut,Straub Anton,Kübler Alexander C.,Linz Christian,Gbureck Uwe

Abstract

Abstract Objectives Synthetic bone substitutes which can be adapted preoperatively and patient specific may be helpful in various bony defects in the field of oral- and maxillofacial surgery. For this purpose, composite grafts made of self-setting and oil-based calcium phosphate cement (CPC) pastes, which were reinforced with 3D-printed polycaprolactone (PCL) fiber mats were manufactured. Materials and methods Bone defect models were acquired using patient data from real defect situations of patients from our clinic. Using a mirror imaging technique, templates of the defect situation were fabricated via a commercially available 3D-printing system. The composite grafts were assembled layer by layer, aligned on top of these templates and fitted into the defect situation. Besides, PCL-reinforced CPC samples were evaluated regarding their structural and mechanical properties via X-ray diffraction (XRD), infrared (IR) spectroscopy, scanning electron microscopy (SEM), and 3-point-bending testing. Results The process sequence including data acquisition, template fabrication, and manufacturing of patient specific implants proved to be accurate and uncomplicated. The individual implants consisting mainly of hydroxyapatite and tetracalcium phosphate displayed good processability and a high precision of fit. The mechanical properties of the CPC cements in terms of maximum force and stress load to material fatigue were not negatively affected by the PCL fiber reinforcement, whereas clinical handling properties increased remarkably. Conclusion PCL fiber reinforcement of CPC cements enables the production of very freely modelable three-dimensional implants with adequate chemical and mechanical properties for bone replacement applications. Clinical relevance The complex bone morphology in the region of the facial skull often poses a great challenge for a sufficient reconstruction of bony defects. A full-fledged bone replacement here often requires the replication of filigree three-dimensional structures partly without support from the surrounding tissue. With regard to this problem, the combination of smooth 3D-printed fiber mats and oil-based CPC pastes represents a promising method for fabricating patient specific degradable implants for the treatment of various craniofacial bone defects.

Funder

Deutsche Forschungsgemeinschaft

Universitätsklinikum Würzburg

Publisher

Springer Science and Business Media LLC

Subject

General Dentistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3