Impact of material combinations and removal and insertion cycles on the retention force of telescopic systems

Author:

Micovic Soldatovic Danka,Bitter Maximiliane,Meinen John,Huth Karin Christine,Liebermann Anja,Stawarczyk Bogna

Abstract

Abstract Objectives A variety of dental materials are available for the fabrication of telescopic crowns. The aim was to investigate the impact of material combinations and removal and insertion cycles on their retention forces. Materials and methods CAD/CAM-fabricated cobalt–chromium–molybdenum (CoCr) and zirconia (ZrO2) primary crowns were combined with polyetheretherketone (PEEK), polyetherketoneketone (PEKK), CoCr, and ZrO2 secondary crowns (four combinations included PEEK/PEKK secondary crowns in a thickness of 0.5 mm bonded to the CoCr tertiary construction), resulting in 12 different material combinations: CoCr–PEEK; CoCr–PEKK; CoCr–ZrO2; CoCr–CoCr; CoCr–PEEK 0.5; CoCr–PEKK 0.5; ZrO2–PEEK; ZrO2–PEKK; ZrO2–ZrO2, ZrO2–CoCr; ZrO2–PEEK 0.5; and ZrO2–PEKK 0.5 (n = 15 pairings per material combination). Pull-off tests were performed with a universal testing machine initially and after 500, 5000, and 10,000 removal and insertion cycles in a mastication simulator. Descriptive statistics with the Kolmogorov–Smirnov, Kruskal–Wallis, and Mann–Whitney U tests were computed (α = 0.05). Results The tested parameters, material combination, and removal and insertion cycles had significant impact on the retention force values (p < 0.001). An increase in removal and insertion cycles was associated with a decrease in retention forces within CoCr and ZrO2 secondary crowns, regardless of the primary crown material. In contrast, PEEK and PEKK secondary crowns presented higher retention load values after 10,000 cycles than initially. Conclusion Different material combinations behaved differently after simulated removal and insertion regimens. This difference should be considered during treatment planning. Clinical relevance Telescopic crown systems should be made of materials with predictable retention forces that do not deteriorate with time. The implementation of new materials and technologies facilitates reproducibility and time-saving fabrication.

Funder

Universitätsklinik München

Publisher

Springer Science and Business Media LLC

Subject

General Dentistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3