Orthodontic shear bond strength and ultimate load tests of CAD/CAM produced artificial teeth

Author:

Roser Christoph J.ORCID,Rückschloß Thomas,Zenthöfer Andreas,Rammelsberg Peter,Lux Christopher J.,Rues Stefan

Abstract

Abstract  Objectives To investigate whether artificial CAD/CAM processed (computer-aided design/manufacturing) teeth could be a feasible option for the production of dental in vitro models for biomechanical testing. Material and methods Disks (n = 10 per group) made from two different CAD/CAM-materials, one fiber-reinforced composite (FRC; Trinia, Bicon) and one polymethylmethacrylate-based resin (PMMA; Telio CAD, Ivoclar Vivadent), as well as bovine teeth (n = 10), were tested for their shear bond strength (SBS) and scored according to the adhesive remnant index (ARI). In addition, CAD/CAM-manufactured lower incisor teeth were tested for their ultimate load (Fu). Results With regard to SBS, both PMMA (17.4 ± 2.2 MPa) and FRC (18.0 ± 2.4 MPa) disks showed no significant difference (p = 0.968) compared to bovine disks (18.0 ± 5.4 MPa). However, the samples differed with regard to their failure mode (PMMA: ARI 4, delamination failure; FRC: ARI 0 and bovine: ARI 1.6, both adhesive failure). With regard to Fu, FRC-based teeth could withstand significantly higher loads (708 ± 126 N) than PMMA-based teeth (345 ± 109 N) (p < 0.01). Conclusion Unlike PMMA-based teeth, teeth made from FRC showed sufficiently high fracture resistance and comparable SBS. Thus, FRC teeth could be a promising alternative for the production of dental in vitro models for orthodontic testing. Clinical relevance CAD/CAM-processed teeth made from FRC enable the use of standardized geometry and constant material properties. Using FRC teeth in dental in vitro studies has therefore the potential to identify differences between various treatment options with rather small sample sizes, while remaining close to the clinical situation.

Funder

Universitätsklinikum Heidelberg

Publisher

Springer Science and Business Media LLC

Subject

General Dentistry

Reference45 articles.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3