Advancements in diagnosing oral potentially malignant disorders: leveraging Vision transformers for multi-class detection

Author:

Vinayahalingam Shankeeth,van Nistelrooij Niels,Rothweiler René,Tel Alessandro,Verhoeven Tim,Tröltzsch Daniel,Kesting Marco,Bergé Stefaan,Xi Tong,Heiland Max,Flügge Tabea

Abstract

Abstract Objectives Diagnosing oral potentially malignant disorders (OPMD) is critical to prevent oral cancer. This study aims to automatically detect and classify the most common pre-malignant oral lesions, such as leukoplakia and oral lichen planus (OLP), and distinguish them from oral squamous cell carcinomas (OSCC) and healthy oral mucosa on clinical photographs using vision transformers. Methods 4,161 photographs of healthy mucosa, leukoplakia, OLP, and OSCC were included. Findings were annotated pixel-wise and reviewed by three clinicians. The photographs were divided into 3,337 for training and validation and 824 for testing. The training and validation images were further divided into five folds with stratification. A Mask R-CNN with a Swin Transformer was trained five times with cross-validation, and the held-out test split was used to evaluate the model performance. The precision, F1-score, sensitivity, specificity, and accuracy were calculated. The area under the receiver operating characteristics curve (AUC) and the confusion matrix of the most effective model were presented. Results The detection of OSCC with the employed model yielded an F1 of 0.852 and AUC of 0.974. The detection of OLP had an F1 of 0.825 and AUC of 0.948. For leukoplakia the F1 was 0.796 and the AUC was 0.938. Conclusions OSCC were effectively detected with the employed model, whereas the detection of OLP and leukoplakia was moderately effective. Clinical relevance Oral cancer is often detected in advanced stages. The demonstrated technology may support the detection and observation of OPMD to lower the disease burden and identify malignant oral cavity lesions earlier.

Funder

Charité - Universitätsmedizin Berlin

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3