Progress Towards Using Linked Population-Based Data For Geohealth Research: Comparisons Of Aotearoa New Zealand And The United Kingdom

Author:

Oldroyd R. A.ORCID,Hobbs M.,Campbell M.,Jenneson V.,Marek L.,Morris M. A.,Pontin F.,Sturley C.,Tomintz M.,Wiki J.,Birkin M.,Kingham S.,Wilson M.

Abstract

AbstractGlobally, geospatial concepts are becoming increasingly important in epidemiological and public health research. Individual level linked population-based data afford researchers with opportunities to undertake complex analyses unrivalled by other sources. However, there are significant challenges associated with using such data for impactful geohealth research. Issues range from extracting, linking and anonymising data, to the translation of findings into policy whilst working to often conflicting agendas of government and academia. Innovative organisational partnerships are therefore central to effective data use. To extend and develop existing collaborations between the institutions, in June 2019, authors from the Leeds Institute for Data Analytics and the Alan Turing Institute, London, visited the Geohealth Laboratory based at the University of Canterbury, New Zealand. This paper provides an overview of insight shared during a two-day workshop considering aspects of linked population-based data for impactful geohealth research. Specifically, we discuss both the collaborative partnership between New Zealand’s Ministry of Health (MoH) and the University of Canterbury’s GeoHealth Lab and novel infrastructure, and commercial partnerships enabled through the Leeds Institute for Data Analytics and the Alan Turing Institute in the UK. We consider the New Zealand Integrated Data Infrastructure as a case study approach to population-based linked health data and compare similar approaches taken by the UK towards integrated data infrastructures, including the ESRC Big Data Network centres, the UK Biobank, and longitudinal cohorts. We reflect on and compare the geohealth landscapes in New Zealand and the UK to set out recommendations and considerations for this rapidly evolving discipline.

Publisher

Springer Science and Business Media LLC

Subject

Geography, Planning and Development

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3