1. ALEXANDER, J.C., YORKE, J.A.: The homotopy continuation method, Numerically implementable topolgogical procedures, Trans. AMS, 242 (1978), 271–284
2. ALEXANDER, J.C.: The topolgocial theory of an embedding method, in: "Continuation Methods", H.J. Wacker, ed., New York: Academic Press, 1978.
3. ALEXANDER, J.C.: Numerical continuation methods and bifurcation, in "Functional differential equations and approximation of fixed points", H.O. Peitgen and H.O. Walther, eds., Berlin, Heidelberg, New York: Springer Lecture Notes, 1979.
4. ALEXANDER, J.C., YORKE, J.A.: A numerical continuation method that works generically, University of Maryland, Dept. of Math., MD 77-9-JA, TR 77-9.
5. ALLGOWER, E.L., GEORG, K.: Simplicial and Continuation Methods for Approximating Fixed Points and Solutions to Systems of Equations, SIAM Review (to appear).