In situ nozzle reservoir thermometry by laser-induced grating spectroscopy in the HELM free-piston reflected shock tunnel

Author:

Selcan C.,Sander T.,Mundt Ch.

Abstract

AbstractExperimental determination of test gas caloric quantities in high-enthalpy ground testing is impeded by excessive pressure and temperature levels as well as minimum test timescales of short-duration facilities. Yet, accurate knowledge of test gas conditions and stagnation enthalpy prior to nozzle expansion is crucial for a valid comparison of experimental data with numerical results. To contribute to a more accurate quantification of nozzle inlet conditions, an experimental study on non-intrusive in situ measurements of the post-reflected shock wave stagnation temperature in a large-scale free-piston reflected shock tunnel is carried out. A series of 20 single-shot temperature measurements by resonant homodyne laser-induced grating spectroscopy (LIGS) is presented for three low-/medium-enthalpy conditions (1.2–2.1 MJ/kg) at stagnation temperatures 1100–1900 K behind the reflected shock wave. Prior limiting factors resulting from impulse facility recoil and restricted optical access to the high-pressure nozzle reservoir are solved, and advancement of the optical set-up is detailed. Measurements in air agree with theoretical calculations to within 1–15%, by trend reflecting greater temperatures than full thermo-chemical equilibrium and lesser temperatures than predicted by ideal gas shock jump relations. For stagnation pressures in the range 9–22 MPa, limited influence due to finite-rate vibrational excitation is conceivable. LIGS is demonstrated to facilitate in situ measurements of stagnation temperature within full-range ground test facilities by superior robustness under high-pressure conditions and to be a useful complement of established optical diagnostics for hypersonic flows.

Publisher

Springer Science and Business Media LLC

Subject

General Physics and Astronomy,Mechanical Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3