Lp-slam: language-perceptive RGB-D SLAM framework exploiting large language model

Author:

Zhang WeiyiORCID,Guo Yushi,Niu Liting,Li Peijun,Wan Zeyu,Shao Fei,Nian Cheng,Farrukh Fasih Ud Din,Zhang Debing,Zhang Chun,Li Qiang,Zhang Jianwei

Abstract

AbstractWith the development of deep learning, a higher level of perception of the environment such as the semantic level can be achieved in the simultaneous localization and mapping (SLAM) domain. However, previous works did not achieve a natural-language level of perception. Therefore, LP-SLAM (Language-Perceptive RGB-D SLAM) is proposed that leverages large language models (LLMs). The texts in the scene can be detected by scene text recognition (STR) and mapped as landmarks with a task-driven selection. A text error correction chain (TECC) is designed with a similarity classification method, a two-stage memory strategy, and a text clustering method. The proposed architecture is designed to deal with the mis-detection and mis-recognition cases of STR and to provide accurate text information to the framework. The proposed framework takes input images and generates a 3D map with sparse point cloud and task-related texts. Finally, a natural user interface (NUI) is designed based on the constructed map and LLM, which gives position instructions based on users’ natural queries. The experimental results validated the proposed TECC design and the overall framework. We publish the virtual dataset with ground truth, as well as the source code for further research. https://github.com/GroupOfLPSLAM/LP_SLAM.

Funder

National Natural Science Foundation of China

HORIZON EUROPE Marie Sklodowska-Curie Actions

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3