GIPC-GAN: an end-to-end gradient and intensity joint proportional constraint generative adversarial network for multi-focus image fusion

Author:

Li JunwuORCID,Li Binhua,Jiang Yaoxi

Abstract

AbstractAs for the problems of boundary blurring and information loss in the multi-focus image fusion method based on the generative decision maps, this paper proposes a new gradient-intensity joint proportional constraint generative adversarial network for multi-focus image fusion, with the name of GIPC-GAN. First, a set of labeled multi-focus image datasets using the deep region competition algorithm on a public dataset is constructed. It can train the network and generate fused images in an end-to-end manner, while avoiding boundary errors caused by artificially constructed decision maps. Second, the most meaningful information in the multi-focus image fusion task is defined as the target intensity and detail gradient, and a jointly constrained loss function based on intensity and gradient proportional maintenance is proposed. Constrained by a specific loss function to force the generated image to retain the information of target intensity, global texture and local texture of the source image as much as possible and maintain the structural consistency between the fused image and the source image. Third, we introduce GAN into the network, and establish an adversarial game between the generator and the discriminator, so that the intensity structure and texture gradient retained by the fused image are kept in a balance, and the detailed information of the fused image is further enhanced. Last but not least, experiments are conducted on two multi-focus public datasets and a multi-source multi-focus image sequence dataset and compared with other 7 state-of-the-art algorithms. The experimental results show that the images fused by the GIPC-GAN model are superior to other comparison algorithms in both subjective performance and objective measurement, and basically meet the requirements of real-time image fusion in terms of running efficiency and mode parameters quantity.

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Computational Mathematics,Engineering (miscellaneous),Information Systems,Artificial Intelligence

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An Adaptive Region Division Multi-Focus Image Fusion Algorithm with Defocus Diffusion Mitigation Mechanism;Proceedings of the 2024 2nd Asia Conference on Computer Vision, Image Processing and Pattern Recognition;2024-04-26

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3