Attention-based RNN with question-aware loss and multi-level copying mechanism for natural answer generation

Author:

Zhao FenORCID,Shao Huishuang,Li Shuo,Wang Yintong,Yu Yan

Abstract

AbstractNatural answer generation is in a very clear practical significance and strong application background, which can be widely used in the field of knowledge services such as community question answering and intelligent customer service. Traditional knowledge question answering is to provide precise answer entities and neglect the defects; namely, users hope to receive a complete natural answer. In this research, we propose a novel attention-based recurrent neural network for natural answer generation, which is enhanced with multi-level copying mechanisms and question-aware loss. To generate natural answers that conform to grammar, we leverage multi-level copying mechanisms and the prediction mechanism which can copy semantic units and predict common words. Moreover, considering the problem that the generated natural answer does not match the user question, question-aware loss is introduced to make the generated target answer sequences correspond to the question. Experiments on three response generation tasks show our model to be superior in quality while being more parallelizable and requiring significantly less time to train. Our model achieves 0.727 BLEU on the SimpleQuestions response generation task, improving over the existing best results by over 0.007 BLEU. Our model has scored a significant enhancement on naturalness with up to 0.05 more than best performing baseline. The simulation results show that our method can generate grammatical and contextual natural answers according to user needs.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3