KnowledgeNavigator: leveraging large language models for enhanced reasoning over knowledge graph

Author:

Guo Tiezheng,Yang Qingwen,Wang Chen,Liu Yanyi,Li Pan,Tang Jiawei,Li Dapeng,Wen YingyouORCID

Abstract

AbstractLarge language models have achieved outstanding performance on various downstream tasks with their advanced understanding of natural language and zero-shot capability. However, they struggle with knowledge constraints, particularly in tasks requiring complex reasoning or extended logical sequences. These limitations can affect their performance in question answering by leading to inaccuracies and hallucinations. This paper proposes a novel framework called KnowledgeNavigator that leverages large language models on knowledge graphs to achieve accurate and interpretable multi-hop reasoning. Especially with an analysis-retrieval-reasoning process, KnowledgeNavigator searches the optimal path iteratively to retrieve external knowledge and guide the reasoning to reliable answers. KnowledgeNavigator treats knowledge graphs and large language models as flexible components that can be switched between different tasks without additional costs. Experiments on three benchmarks demonstrate that KnowledgeNavigator significantly improves the performance of large language models in question answering and outperforms all large language models-based baselines.

Funder

Shenyang Science and Technology Plan Project

Liaoning Provincial Science and Technology Innovation Project in the Field of Artificial Intelligence

Publisher

Springer Science and Business Media LLC

Reference46 articles.

1. Touvron H, Lavril T, Izacard G, Martinet X, Lachaux M-A, Lacroix T, Rozière B, Goyal N, Hambro E, Azhar F et al (2023) Llama: Open and efficient foundation language models. arXiv preprint arXiv:2302.13971. Accessed 09 June 2023

2. Anil R, Dai AM, Firat O, Johnson M, Lepikhin D, Passos A, Shakeri S, Taropa E, Bailey P, Chen Z et al (2023) Palm 2 technical report. arXiv preprint arXiv:2305.10403. Accessed 03 July 2023

3. Bai J, Bai S, Chu Y, Cui Z, Dang K, Deng X, Fan Y, Ge W, Han Y, Huang F et al (2023) Qwen technical report. arXiv preprint arXiv:2309.16609. Accessed 07 Dec 2023

4. Zhang Y, Li Y, Cui L, Cai D, Liu L, Fu T, Huang X, Zhao E, Zhang Y, Chen Y et al (2023) Siren’s song in the ai ocean: A survey on hallucination in large language models. arXiv preprint arXiv:2309.01219. Accessed 08 Aug 2023

5. Martino A, Iannelli M, Truong C (2023) Knowledge injection to counter large language model (llm) hallucination. European Semantic Web Conference. Springer, New York, pp 182–185

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3