Spatial-temporal episodic memory modeling for ADLs: encoding, retrieval, and prediction

Author:

Song XinjingORCID,Wang DiORCID,Quek ChaiORCID,Tan Ah-HweeORCID,Wang YanjiangORCID

Abstract

AbstractActivities of daily living (ADLs) relate to people’s daily self-care activities, which reflect their living habits and lifestyle. A prior study presented a neural network model called STADLART for ADL routine learning. In this paper, we propose a cognitive model named Spatial-Temporal Episodic Memory for ADL (STEM-ADL), which extends STADLART to encode event sequences in the form of distributed episodic memory patterns. Specifically, STEM-ADL encodes each ADL and its associated contextual information as an event pattern and encodes all events in a day as an episode pattern. By explicitly encoding the temporal characteristics of events as activity gradient patterns, STEM-ADL can be suitably employed for activity prediction tasks. In addition, STEM-ADL can predict both the ADL type and starting time of the subsequent event in one shot. A series of experiments are carried out on two real-world ADL data sets: Orange4Home and OrdonezB, to estimate the efficacy of STEM-ADL. The experimental results indicate that STEM-ADL is remarkably robust in event retrieval using incomplete or noisy retrieval cues. Moreover, STEM-ADL outperforms STADLART and other state-of-the-art models in ADL retrieval and subsequent event prediction tasks. STEM-ADL thus offers a vast potential to be deployed in real-life healthcare applications for ADL monitoring and lifestyle recommendation.

Funder

National Natural Science Foundation of China

China Scholarship Council

Fundamental Research Funds for the Central Universities

National Research Foundation, Singapore under its AI Singapore Programme

the SMU-A*STAR Joint Lab in Social and Human-Centered Computing

Publisher

Springer Science and Business Media LLC

Subject

Computational Mathematics,Engineering (miscellaneous),Information Systems,Artificial Intelligence

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. FedSTEM-ADL: A Federated Spatial-Temporal Episodic Memory Model for ADL Prediction;2024 International Joint Conference on Neural Networks (IJCNN);2024-06-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3