Decision variable contribution based adaptive mechanism for evolutionary multi-objective cloud workflow scheduling

Author:

Li Jun,Xing LiningORCID,Zhong Wen,Cai Zhaoquan,Hou Feng

Abstract

AbstractWorkflow scheduling is vital to simultaneously minimize execution cost and makespan for cloud platforms since data dependencies among large-scale workflow tasks and cloud workflow scheduling problem involve large-scale interactive decision variables. So far, the cooperative coevolution approach poses competitive superiority in resolving large-scale problems by transforming the original problems into a series of small-scale subproblems. However, the static transformation mechanisms cannot separate interactive decision variables, whereas the random transformation mechanisms encounter low efficiency. To tackle these issues, this paper suggests a decision-variable-contribution-based adaptive evolutionary cloud workflow scheduling approach (VCAES for short). To be specific, the VCAES includes a new estimation method to quantify the contribution of each decision variable to the population advancement in terms of both convergence and diversity, and dynamically classifies the decision variables according to their contributions during the previous iterations. Moreover, the VCAES includes a mechanism to adaptively allocate evolution opportunities to each constructed group of decision variables. Thus, the decision variables with a strong impact on population advancement are assigned more evolution opportunities to accelerate population to approximate the Pareto-optimal fronts. To verify the effectiveness of the proposed VCAES, we carry out extensive numerical experiments on real-world workflows and cloud platforms to compare it with four representative algorithms. The numerical results demonstrate the superiority of the VCAES in resolving cloud workflow scheduling problems.

Funder

National Natural Science Foundation of China

Special Projects in Key Fields of Universities in Guangdong

Hunan Provincial Innovation Foundation for Postgraduate

Publisher

Springer Science and Business Media LLC

Subject

Computational Mathematics,Engineering (miscellaneous),Information Systems,Artificial Intelligence

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3