A novel fractional-order flocking algorithm for large-scale UAV swarms

Author:

Chen Haotian,He MingORCID,Liu Jintao,Xu Peng,Cao Xianghui,Han Wei,Yuan Guodong

Abstract

AbstractThe rate of convergence is a vital factor in determining the outcome of the mission execution of unmanned aerial vehicle (UAV) swarms. However, the difficulty of developing a rapid convergence strategy increases dramatically with the growth of swarm scale. In the present work, a novel fractional-order flocking algorithm (FOFA) is proposed for large-scale UAV swarms. First, based on the interaction rules of repulsion, attraction and alignment among swarm individuals, fractional calculus is introduced to replace traditional integer-order velocity updating, which enables UAVs to utilize historical information during flight. Subsequently, the convergence of the algorithm is theoretically analyzed. Some sufficient convergence conditions for the FOFA are presented by exploiting graph theory. Finally, the simulation results validate that our proposed FOFA performs much better than traditional flocking algorithms in terms of convergence rate. Meanwhile, the relationships between the fractional order of the FOFA and the convergence time of the UAV swarm are discussed. We find that under certain conditions, the fractional order is strongly correlated with the convergence rate of the UAV swarm; that is, a small fractional order (more consideration of historical information) leads to better performance. Moreover, the fractional order can be used as an important parameter to control the convergence rate of a large-scale UAV swarm.

Funder

National Natural Science Foundation of China

National Talent Project of China

Provincial Primary Research & Development Plan of Jiangsu, China

Military High-level Talents Innovation Project

Publisher

Springer Science and Business Media LLC

Subject

Computational Mathematics,Engineering (miscellaneous),Information Systems,Artificial Intelligence

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3