Hierarchical edge-aware network for defocus blur detection

Author:

Zhao Zijian,Yang Hang,Luo Huiyuan

Abstract

AbstractDefocus blur detection (DBD) aims to separate blurred and unblurred regions for a given image. Due to its potential and practical applications, this task has attracted much attention. Most of the existing DBD models have achieved competitive performance by aggregating multi-level features extracted from fully convolutional networks. However, they also suffer from several challenges, such as coarse object boundaries of the defocus blur regions, background clutter, and the detection of low contrast focal regions. In this paper, we develop a hierarchical edge-aware network to solve the above problems, to the best of our knowledge, it is the first trial to develop an end-to-end network with edge awareness for DBD. We design an edge feature extraction network to capture boundary information, a hierarchical interior perception network is used to generate local and global context information, which is helpful to detect the low contrast focal regions. Moreover, a hierarchical edge-aware fusion network is proposed to hierarchically fuse edge information and semantic features. Benefiting from the rich edge information, the fused features can generate more accurate boundaries. Finally, we propose a progressive feature refinement network to refine the output features. Experimental results on two widely used DBD datasets demonstrate that the proposed model outperforms the state-of-the-art approaches.

Funder

National Natural Science Foundation of China

Chinese Academy of Sciences-Youth Innovation Promotion Association

Department of Science and Technology of Jilin Province

Publisher

Springer Science and Business Media LLC

Subject

General Earth and Planetary Sciences,General Environmental Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3