Structure-enhanced pairwise feature learning for face clustering

Author:

Li Shaoying,Li Jie,Wang Bincheng,Yao Wei,Liu Bo

Abstract

AbstractFace clustering groups massive unlabeled face images according to their underlying identities and has proven to be a valuable tool for data analysis. Most recent studies have utilized graph convolutional networks (GCNs) to explore the structural properties of faces, thereby effectively achieving improved clustering performance. However, these methods usually suffer from computational intractability for large-scale graphs and tend to be sensitive to some postprocessing thresholds that serve to purify the clustering results. To address these issues, in this paper, we consider each pairwise relationship between two samples as a learning unit and infer clustering assignments by evaluating a group of pairwise connections. Specifically, we propose a novel clustering framework, named structure-enhanced pairwise feature learning (SEPFL), which mixes neighborhood information to adaptively produce pairwise representations for cluster identification. In addition, we design a combined density strategy to select representative pairs, thus ensuring training effectiveness and inference efficiency. The extensive experimental results show that SEPFL achieves better performance than other advanced face clustering techniques.

Funder

National Natural Science Foundation of China

the S &T Program of Hebei

Natural Science Foundation of Hebei Province

Publisher

Springer Science and Business Media LLC

Subject

Computational Mathematics,Engineering (miscellaneous),Information Systems,Artificial Intelligence

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3