Intelligent conflict detection of IoT services using high-level Petri nets

Author:

Yang Rong,Wu MouORCID,Gui Xueqin,Chen Hongsheng

Abstract

AbstractInternet of Things has become a common paradigm for various domains. To meet a user’s complex requirement, we should compose multiple IoT devices (IoT services) to provide comprehensive services to the user. However, these services usually coexist, which is likely to lead to conflicts. Moreover, each user may have different kinds of needs. Suppose that in a smart home there are more than one person, a conflict may occur when they request the same service in this environment. Actually, even though they request different IoT services, among which if there exists function impact or QoS impact, a conflict could still occur. In this paper, we propose to employ high-level Petri nets to detect conflicts among IoT services. We first model the formal methods for conflict policies. Then, we present a Petri nets-based mechanism for modeling and detecting conflicts. Finally, we expand the previous model and use high-level Petri nets for handling fuzzy IoT conflict policies modeling and reasoning. The experimental results show that the proposed approach performs well in accuracy.

Funder

Research on philosophy and Social Science in Hubei Province

the natural science foundation of Hubei province

the outstanding  young and middle-aged science and technology innovation team of universities in Hubei Province

the innovation team of Hubei University of Science and Technology

the science and technology planning project of Xianning city

Publisher

Springer Science and Business Media LLC

Reference51 articles.

1. Yavuz AA, Ozmen MO (2022) Ultra lightweight multiple-time digital signature for the internet of things devices[J]. IEEE Trans Serv Comput 1:15

2. Zhang J, Yang Y, Liu X et al (2022) An efficient blockchain-based hierarchical data sharing for healthcare internet of things[J]. IEEE Trans Industr Inf 18(10):7139–7150

3. Xu C (2022) Context aware mobility in internet of things enabling technologies, applications, and challenges[J]. Trans Emerging Telecommun Technol 8:33

4. Wu C, Liu S, Zeng Z et al (2022) Knowledge graph-based multi-context-aware recommendation algorithm[J]. Inf Sci 595:179–194. https://doi.org/10.1016/j.ins.2022.02.054

5. Baranwal G, Singh M, Vidyarthi DP (2020) A framework for IoT service selection[J]. J Supercomput 76:2777–2814

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3