Data-driven Harris Hawks constrained optimization for computationally expensive constrained problems

Author:

Fu Chongbo,Dong Huachao,Wang Peng,Li Yihong

Abstract

AbstractAiming at the constrained optimization problem where function evaluation is time-consuming, this paper proposed a novel algorithm called data-driven Harris Hawks constrained optimization (DHHCO). In DHHCO, Kriging models are utilized to prospect potentially optimal areas by leveraging computationally expensive historical data during optimization. Three powerful strategies are, respectively, embedded into different phases of conventional Harris Hawks optimization (HHO) to generate diverse candidate sample data for exploiting around the existing sample data and exploring uncharted region. Moreover, a Kriging-based data-driven strategy composed of data-driven population construction and individual selection strategy is presented, which fully mines and utilizes the potential available information in the existing sample data. DHHCO inherits and develops HHO's offspring updating mechanism, and meanwhile exerts the prediction ability of Kriging, reduces the number of expensive function evaluations, and provides new ideas for data-driven constraint optimization. Comprehensive experiments have been conducted on 13 benchmark functions and a real-world expensive optimization problem. The experimental results suggest that the proposed DHHCO can achieve quite competitive performance compared with six representative algorithms and can find the near global optimum with 200 function evaluations for most examples. Moreover, DHHCO is applied to the structural optimization of the internal components of the real underwater vehicle, and the final satisfactory weight reduction effect is more than 18%.

Funder

National Natural Science Foundation of China

Innovation Foundation for Doctor Dissertation of Northwestern Polytechnical University

Publisher

Springer Science and Business Media LLC

Subject

Computational Mathematics,Engineering (miscellaneous),Information Systems,Artificial Intelligence

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3