Sla-former: conformer using shifted linear attention for audio-visual speech recognition

Author:

Xiao Yewei,Huang JianORCID,Liu Xuanming,Zhu Aosu

Abstract

AbstractConformer-based models have proven highly effective in Audio-visual Speech Recognition, integrating auditory and visual inputs to significantly enhance speech recognition accuracy. However, the widely utilized softmax attention mechanism within conformer models encounters scalability issues, with its spatial and temporal complexity escalating quadratically with sequence length. To address these challenges, this paper introduces the Shifted Linear Attention Conformer, an evolved iteration of the conformer architecture. Shifted Linear Attention Conformer adopts shifted linear attention as a scalable alternative to softmax attention. We conducted a thorough analysis of the factors constraining the efficiency of linear attention. To mitigate these issues, we propose the utilization of a straightforward yet potent mapping function and an efficient rank restoration module, enhancing the effectiveness of self-attention while maintaining low computational complexity. Furthermore, we integrate an advanced attention-shifting technique facilitating token manipulation within attentional mechanisms, thereby enhancing information flow across various groups. This three-part approach enhances cognitive computations, particularly beneficial for processing longer sequences. Our model achieves exceptional Word Error Rates of 1.9% and 1.5% on the Lip Reading Sentences 2 and Lip Reading Sentences 3 datasets, respectively, showcasing its state-of-the-art performance in audio-visual speech recognition tasks.

Funder

Joint Fund for Regional Innovation and Development of NSFC

Science and Technology Research and Major Achievements Transformation Project of Strategic Emerging Industries in Hunan Province

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3