Spatiotemporal key region transformer for visual tracking

Author:

Wu RuixuORCID,Wen Xianbin,Yuan Liming,Xu Haixia

Abstract

AbstractVisual tracking is an important field of computer vision research. Although transformer-based trackers have achieved remarkable performance, the transformer structure is globally computationally inefficient, it does not screen important patches, and it cannot focus on key target regions. At the same time, temporal motion features are easily overlooked. To solve these problems, this paper proposes a new method, SKRT, that removes the CNN structure and directly uses a transformer as the backbone network to extract multiframe video features. Then, these feature maps are mixed and superimposed to obtain spatiotemporal information. To focus on important parts efficiently, we use key region extraction to obtain a small set of template and search feature map patches and reinput them into the transformer as a cross-correlation computation. Finally, we predict the position of a tracking object through center-corner prediction. To demonstrate the effectiveness of our method, we conduct experiments on challenging benchmark datasets (GOT-10K, TrackingNet, VOT2018, OTB100, LaSOT), and the results show that SKRT is competitive with other state-of-the-art methods.

Publisher

Springer Science and Business Media LLC

Subject

Computational Mathematics,Engineering (miscellaneous),Information Systems,Artificial Intelligence

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3