Multi-scale attention-based lightweight network with dilated convolutions for infrared and visible image fusion

Author:

Li Fuquan,Zhou Yonghui,Chen YanLiORCID,Li Jie,Dong ZhiCheng,Tan Mian

Abstract

AbstractInfrared and visible image fusion aims to generate synthetic images including salient targets and abundant texture details. However, traditional techniques and recent deep learning-based approaches have faced challenges in preserving prominent structures and fine-grained features. In this study, we propose a lightweight infrared and visible image fusion network utilizing multi-scale attention modules and hybrid dilated convolutional blocks to preserve significant structural features and fine-grained textural details. First, we design a hybrid dilated convolutional block with different dilation rates that enable the extraction of prominent structure features by enlarging the receptive field in the fusion network. Compared with other deep learning methods, our method can obtain more high-level semantic information without piling up a large number of convolutional blocks, effectively improving the ability of feature representation. Second, distinct attention modules are designed to integrate into different layers of the network to fully exploit contextual information of the source images, and we leverage the total loss to guide the fusion process to focus on vital regions and compensate for missing information. Extensive qualitative and quantitative experiments demonstrate the superiority of our proposed method over state-of-the-art methods in both visual effects and evaluation metrics. The experimental results on public datasets show that our method can improve the entropy (EN) by 4.80%, standard deviation (SD) by 3.97%, correlation coefficient (CC) by 1.86%, correlations of differences (SCD) by 9.98%, and multi-scale structural similarity (MS_SSIM) by 5.64%, respectively. In addition, experiments with the VIFB dataset further indicate that our approach outperforms other comparable models.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Basic Research Plan of Guizhou Province

Guizhou Provincial Science and Technology Projects

Youth Science and Technology Talents Cultivating Object of Guizhou Province

Publisher

Springer Science and Business Media LLC

Subject

Computational Mathematics,Engineering (miscellaneous),Information Systems,Artificial Intelligence

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3