Joint dual-teacher distillation and unsupervised fusion for unpaired real-world image dehazing

Author:

Qiao Yingxu,Zhan Xiyan,Luo Fen,Huo ZhanqiangORCID

Abstract

AbstractExisting learning-based dehazing algorithms struggle to deal with real world hazy images for lack of paired clean data. Moreover, most dehazing methods require significant computation and memory. To address the above problems, we propose a joint dual-teacher knowledge distillation and unsupervised fusion framework for single image dehazing in this paper. First, considering the complex degradation factors in real-world hazy images, two synthetic-to-real dehazing networks are explored to generate two preliminary dehazing results with the heterogeneous distillation strategy. Second, to get more qualified ground truth, an unsupervised adversarial fusion network is proposed to refine the preliminary outputs of teachers with unpaired clean images. In particular, the unpaired clean images are enhanced to deal with the dim artifacts. Furthermore, to alleviate the structure distortion in the unsupervised adversarial training, we constructed an intermediate image to constrain the output of the fusion network. Finally, considering the memory storage and computation overhead, an end-to-end lightweight student network is trained to learn the mapping from the original hazy image to the output of the fusion network. Experimental results demonstrate that the proposed method achieves state-of-the-art performance on real-world hazy images in terms of no-reference image quality assessment and the parameters.

Funder

National Science Foundation of China

Publisher

Springer Science and Business Media LLC

Reference55 articles.

1. Li C, Zhou H, Liu Y, Yang C, Xie Y, Li Z, Zhu L (2023) Detection-friendly dehazing: object detection in real-world hazy scenes. IEEE Trans Pattern Anal Mach Intell 45:8284–8295

2. Liu W, Ren G, Yu R, Guo S, Zhu J, Zhang L (2021) Image-adaptive yolo for object detection in adverse weather conditions. In: AAAI Conference on Artificial Intelligence

3. Yang X, Mi MB, Yuan Y, Wang X, Tan RT (2022) Object detection in foggy scenes by embedding depth and reconstruction into domain adaptation. In: Asian Conference on Computer Vision

4. Lee S, Son T, Kwak S (2022) Fifo: Learning fog-invariant features for foggy scene segmentation. 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 18889–18899

5. Yan L, Fan B, Liu H, Huo C, Xiang S, Pan C (2020) Triplet adversarial domain adaptation for pixel-level classification of vhr remote sensing images. IEEE Trans Geosci Remote Sens 58:3558–3573

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3