A Hybrid Swarm and Gravitation-based feature selection algorithm for handwritten Indic script classification problem

Author:

Guha RitamORCID,Ghosh ManosijORCID,Singh Pawan KumarORCID,Sarkar RamORCID,Nasipuri MitaORCID

Abstract

AbstractIn any multi-script environment, handwritten script classification is an unavoidable pre-requisite before the document images are fed to their respective Optical Character Recognition (OCR) engines. Over the years, this complex pattern classification problem has been solved by researchers proposing various feature vectors mostly having large dimensions, thereby increasing the computation complexity of the whole classification model. Feature Selection (FS) can serve as an intermediate step to reduce the size of the feature vectors by restricting them only to the essential and relevant features. In the present work, we have addressed this issue by introducing a new FS algorithm, called Hybrid Swarm and Gravitation-based FS (HSGFS). This algorithm has been applied over three feature vectors introduced in the literature recently—Distance-Hough Transform (DHT), Histogram of Oriented Gradients (HOG), and Modified log-Gabor (MLG) filter Transform. Three state-of-the-art classifiers, namely, Multi-Layer Perceptron (MLP), K-Nearest Neighbour (KNN), and Support Vector Machine (SVM), are used to evaluate the optimal subset of features generated by the proposed FS model. Handwritten datasets at block, text line, and word level, consisting of officially recognized 12 Indic scripts, are prepared for experimentation. An average improvement in the range of 2–5% is achieved in the classification accuracy by utilizing only about 75–80% of the original feature vectors on all three datasets. The proposed method also shows better performance when compared to some popularly used FS models. The codes used for implementing HSGFS can be found in the following Github link: https://github.com/Ritam-Guha/HSGFS.

Publisher

Springer Science and Business Media LLC

Subject

General Earth and Planetary Sciences,General Environmental Science

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3