A federated data-driven evolutionary algorithm for expensive multi-/many-objective optimization

Author:

Xu Jinjin,Jin YaochuORCID,Du Wenli

Abstract

AbstractData-driven optimization has found many successful applications in the real world and received increased attention in the field of evolutionary optimization. Most existing algorithms assume that the data used for optimization are always available on a central server for construction of surrogates. This assumption, however, may fail to hold when the data must be collected in a distributed way and are subject to privacy restrictions. This paper aims to propose a federated data-driven evolutionary multi-/many-objective optimization algorithm. To this end, we leverage federated learning for surrogate construction so that multiple clients collaboratively train a radial-basis-function-network as the global surrogate. Then a new federated acquisition function is proposed for the central server to approximate the objective values using the global surrogate and estimate the uncertainty level of the approximated objective values based on the local models. The performance of the proposed algorithm is verified on a series of multi-/many-objective benchmark problems by comparing it with two state-of-the-art surrogate-assisted multi-objective evolutionary algorithms.

Publisher

Springer Science and Business Media LLC

Subject

General Earth and Planetary Sciences,General Environmental Science

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Secure Federated Data-Driven Evolutionary Multi-Objective Optimization Algorithm;IEEE Transactions on Emerging Topics in Computational Intelligence;2024-02

2. A double decomposition based coevolutionary algorithm for distributed multi-objective OPF solution;International Journal of Electrical Power & Energy Systems;2024-01

3. Privacy-preserving federated Bayesian optimization with learnable noise;Information Sciences;2024-01

4. Secure Federated Evolutionary Optimization—A Survey;Engineering;2023-12

5. Recent Advances in Bayesian Optimization;ACM Computing Surveys;2023-07-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3