Parameter sharing and multi-granularity feature learning for cross-modality person re-identification

Author:

Chan Sixian,Du Feng,Tang Tinglong,Zhang Guodao,Jiang Xiaoliang,Guan QiuORCID

Abstract

AbstractVisible-infrared person re-identification aims to match pedestrian images between visible and infrared modalities, and its two main challenges are intra-modality differences and cross-modality differences between visible and infrared images. To address these issues, many advanced methods attempt to design new network structures to extract modality-sharing features, mitigate modality differences, or learn part-level features to overcome background interference. However, they ignore the parameter sharing of the convolutional layers to obtain more modality-sharing features. At the same time, only using part-level features lack discriminative pedestrian representations such as body structure and contours. To handle these problems, a parameter sharing and feature learning network is proposed in this paper to mitigate modality differences and further enhance feature discrimination. Firstly, a new two-stream parameter sharing network is proposed, by sharing the convolutional layers parameters to obtain more modality-sharing features. Secondly, a multi-granularity feature learning module is designed to reduce modality differences at both coarse and fine-grained levels while further enhancing feature discriminability. In addition, a center alignment loss is proposed to learn relationships between identities and to reduce modality differences by clustering features into their centers. For the part-level feature learning, the hetero-center triplet loss is adopted to alleviate the strict constraints of triplet loss. Finally, extensive experiments are conducted to validate our method outperforms state-of-the-art methods on two challenging datasets. In the SYSU-MM01 dataset, the Rank-1 and mAP reach $$74.0\%$$ 74.0 % and $$70.51\%$$ 70.51 % in the all-search mode, which is an increase of $$3.4\%$$ 3.4 % and $$3.61\%$$ 3.61 % to baseline, respectively.

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Computational Mathematics,Engineering (miscellaneous),Information Systems,Artificial Intelligence

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3