Author:
Chen Minyang,Du Wei,Song Wenjiang,Liang Chen,Tang Yang
Abstract
AbstractIt is a great challenge for ordinary evolutionary algorithms (EAs) to tackle large-scale global optimization (LSGO) problems which involve over hundreds or thousands of decision variables. In this paper, we propose an improved weighted optimization approach (LSWOA) for helping solve LSGO problems. Thanks to the dimensionality reduction of weighted optimization, LSWOA can optimize transformed problems quickly and share the optimal weights with the population, thereby accelerating the overall convergence. First, we concentrate on the theoretical investigation of weighted optimization. A series of theoretical analyses are provided to illustrate the search behavior of weighted optimization, and the equivalent form of the transformed problem is presented to show the relationship between the original problem and the transformed one. Then the factors that affect problem transformation and how they take affect are figured out. Finally, based on our theoretical investigation, we modify the way of utilizing weighted optimization in LSGO. A weight-sharing strategy and a candidate solution inheriting strategy are designed, along with a better allocation of computational resources. These modifications help take full advantage of weighted optimization and save computational resources. The extensive experimental results on CEC’2010 and CEC’2013 verify the effectiveness and scalability of the proposed LSWOA.
Publisher
Springer Science and Business Media LLC
Subject
General Earth and Planetary Sciences,General Environmental Science
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献