Two-layer LSTM network-based prediction of epileptic seizures using EEG spectral features

Author:

Singh KuldeepORCID,Malhotra Jyoteesh

Abstract

AbstractEpilepsy is a chronic nervous disorder, which disturbs the normal daily routine of an epileptic patient due to sudden seizure onset. In this era of smart healthcare, automated seizure prediction techniques could assist the patients, their family, and medical personnel to control and manage these seizures. This paper proposes a spectral feature-based two-layer LSTM network model for automatic prediction of epileptic seizures using long-term multichannel EEG signals. This model makes use of spectral power and mean spectrum amplitude features of delta, theta, alpha, beta, and gamma bands of 23-channel EEG spectrum for this task. Initially, the proposed single-layer and two-layer LSTM models have been evaluated for EEG segments having durations in the range of 5–50 s for 24 epileptic subjects, out of which EEG segments of 30 s duration are found to be useful for accurate seizure prediction using two-layer LSTM model. Afterwards, to validate the performance of this classifier, the spectral features of 30 s duration EEG segments are fed to random forest, decision tree, k-nearest neighbour, support vector machine, and naive Bayes classifiers, which are empowered with grid search-based parameter estimation. Finally, the iterative simulation results and comparison with recently published existing techniques firmly reveal that the proposed two-layer LSTM model with EEG spectral features is an effective technique for accurately predicting seizures in real time with an average classification accuracy of 98.14%, average sensitivity of 98.51%, and average specificity of 97.78%, thereby enabling the epileptic patients to have a better quality of life.

Publisher

Springer Science and Business Media LLC

Subject

General Earth and Planetary Sciences,General Environmental Science

Reference52 articles.

1. NINDS (2021) Focus on Epilepsy Resarch: National Institute of Neurological Disorders and Stroke. https://www.ninds.nih.gov/Current-Research/Focus-Research/Focus-Epilepsy. Accessed 23 Feb 2021

2. WHO (2021) Epilepsy: World Health Organization. https://www.who.int/mentalhealth/. Accessed 05 Mar 2021

3. IEC (2019) What is Epilepsy: Indian Epilepsy Centre, New Delhi. http://www.indianepilepsycentre.com/what-is-epilepsy.html. Accessed 20 Feb 2021

4. Freestone DR, Karoly PJ, Cook MJ (2017) A forward-looking review of seizure prediction. Curr Opin Neurol 30(2):167–173

5. Litt B, Esteller R, Echauz J, D’Alessandro M, Shor R, Henry T, Pennell P, Epstein C, Bakay R, Dichter M, Vachtsevanos G (2001) Epileptic seizures may begin hours in advance of clinical onset: a report of five patients. Neuron 30(1):51–64. https://doi.org/10.1016/S0896-6273(01)00262-8

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3