MAFNet: dual-branch fusion network with multiscale atrous pyramid pooling aggregate contextual features for real-time semantic segmentation

Author:

Zhao Shan,Wang YunleiORCID,Wu Xuan,Zhang Fukai

Abstract

AbstractCurrently, many real-time semantic segmentation networks aim for heightened accuracy, inevitably leading to increased computational complexity and reduced inference speed. Therefore, striking a balance between accuracy and speed has emerged as a crucial concern in this domain. To address these challenges, this study proposes a dual-branch fusion network with multiscale atrous pyramid pooling aggregate contextual features for real-time semantic segmentation (MAFNet). The first key component, the semantics guide spatial-details module (SGSDM) not only facilitates precise boundary extraction and fine-grained classification, but also provides semantic-based feature representation, thereby enhancing support for spatial analysis and decision boundaries. The second component, the multiscale atrous pyramid pooling module (MSAPPM), is designed by combining dilation convolution with feature pyramid pooling operations at various dilation rates. This design not only expands the receptive field, but also aggregates rich contextual information more effectively. To further improve the fusion of feature information generated by the dual-branch, a bilateral fusion module (BFM) is introduced. This module employs cross-fusion by calculating weights generated by the dual-branch to balance the weight relationship between the dual branches, thereby achieving effective feature information fusion. To validate the effectiveness of the proposed network, experiments are conducted on a single A100 GPU. MAFNet achieves a mean intersection over union (mIoU) of 77.4% at 70.9 FPS on the Cityscapes test dataset and 77.6% mIoU at 192.5 FPS on the CamVid test dataset. The experimental results conclusively demonstrated that MAFNet effectively strikes a balance between accuracy and speed.

Funder

National Natural Science Foundation of China

Henan Science and Technology Planning Program

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3