Gravity assist space pruning and global optimization of spacecraft trajectories for solar system boundary exploration

Author:

Song Yuqi,Wu Weiren,Hu Hang,Lin Mingpei,Wang Hui,Zhang JinxiuORCID

Abstract

AbstractThe solar system boundary exploration mission has the characteristics of long flight time, high fuel consumption, complex gravity-assist sequence and strict constraints. Therefore, the number of decision variables and the search space of the transfer trajectory are very large, resulting in poor convergence and efficiency of the global search of the metaheuristic algorithm. Moreover, the existing gravity assist space pruning algorithm is no longer applicable for solar system boundary exploration. To effectively reduce the search space and improve the effect of trajectory optimization, an improved gravity assist space pruning algorithm is proposed. In this algorithm, a unique pruning procedure is used to effectively prune the search space, a shape of solution space box bounds combining rectangle and rhombus is adopted, and a method to automatically determine the solution space box bounds is presented. To verify the effectiveness of the improved gravity assist space pruning algorithm, the sensitivity of pruning effect to parameters is analyzed and the optimization effects of three typical metaheuristics are compared. The optimization results of 50 repeated runs of the differential evolution algorithm in the entire search space and the solution space box bounds are compared. Simulation results show that the performance of differential evolution algorithm is better than bat algorithm and firefly algorithm. And the improved pruning algorithm can increase the efficiency of subsequent optimization by more than eleven times and the convergence probability of the objective function by fifty of times. The applicability and efficiency of the proposed method for the solar system boundary exploration are demonstrated.

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Computational Mathematics,Engineering (miscellaneous),Information Systems,Artificial Intelligence

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3