Machine learning-based framework to cover optimal Pareto-front in many-objective optimization

Author:

Asilian Bidgoli Azam,Rahnamayan Shahryar,Erdem Bilgehan,Erdem Zekiye,Ibrahim Amin,Deb Kalyanmoy,Grami Ali

Abstract

AbstractOne of the crucial challenges of solving many-objective optimization problems is uniformly well covering of the Pareto-front (PF). However, many the state-of-the-art optimization algorithms are capable of approximating the shape of many-objective PF by generating a limited number of non-dominated solutions. The exponential increase of the population size is an inefficient strategy that increases the computational complexity of the algorithm dramatically—especially when solving many-objective problems. In this paper, we introduce a machine learning-based framework to cover sparse PF surface which is initially generated by many-objective optimization algorithms; either by classical or meta-heuristic methods. The proposed method, called many-objective reverse mapping (MORM), is based on constructing a learning model on the initial PF set as the training data to reversely map the objective values to corresponding decision variables. Using the trained model, a set of candidate solutions can be generated by a variety of inexpensive generative techniques such as Opposition-based Learning and Latin Hypercube Sampling in both objective and decision spaces. Iteratively generated non-dominated candidate solutions cover the initial PF efficiently with no further need to utilize any optimization algorithm. We validate the proposed framework using a set of well-known many-objective optimization benchmarks and two well-known real-world problems. The coverage of PF is illustrated and numerically compared with the state-of-the-art many-objective algorithms. The statistical tests conducted on comparison measures such as HV, IGD, and the contribution ratio on the built PF reveal that the proposed collaborative framework surpasses the competitors on most of the problems. In addition, MORM covers the PF effectively compared to other methods even with the aid of large population size.

Publisher

Springer Science and Business Media LLC

Subject

General Earth and Planetary Sciences,General Environmental Science

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Enhancing Decision-Making in Sustainable Urban Drainage System Optimization: A Novel Framework for Sparse Pareto-Fronts;Water Resources Management;2024-08-13

2. Exploring Long-term Memory in Evolutionary Multi-objective Algorithms: A Case Study with NSGA-III;2024 IEEE Canadian Conference on Electrical and Computer Engineering (CCECE);2024-08-06

3. Evolutionary Preference Sampling for Pareto Set Learning;Proceedings of the Genetic and Evolutionary Computation Conference;2024-07-14

4. Enhancing Diversity in Multi-Objective Feature Selection;2024 IEEE Congress on Evolutionary Computation (CEC);2024-06-30

5. Path planning algorithm for percutaneous puncture lung mass biopsy procedure based on the multi-objective constraints and fuzzy optimization;Physics in Medicine & Biology;2024-04-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3