A collective neurodynamic approach to distributed resource allocation with event-triggered communication

Author:

Cai XinORCID,Gao Bingpeng,Nan Xinyuan

Abstract

AbstractTo solve a distributed optimal resource allocation problem, a collective neurodynamic approach based on recurrent neural networks (RNNs) is proposed in this paper. Multiple RNNs cooperatively solve a global constrained optimization problem in which the objective function is a total of local non-smooth convex functions and is subject to local convex sets and a global equality constraint. Different from the projection dynamics to deal with local convex sets in the existing work, an internal dynamics with projection output is designed in the algorithm to relax the Slater’s condition satisfied by the optimal solution. To overcome continuous-time communication in a group of RNNs, an aperiodic communication scheme, called the event-triggered scheme, is presented to alleviate communication burden. It is analyzed that the convergence of the designed collective neurodynamic approach based on the event-triggered communication does not rely on global information. Furthermore, it is proved the freeness of the Zeno behavior in the event-triggered scheme. Two examples are presented to illustrate the obtained results

Funder

Fundamental Research Funds for Universities of Xinjiang Uygur Autonomous Region

Natural Science Foundation of Xinjiang Uygur Autonomous Region

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3