Path-guided intelligent switching over knowledge graphs with deep reinforcement learning for recommendation

Author:

Tao ShaohuaORCID,Qiu Runhe,Cao Yan,Xue Guoqing,Ping Yuan

Abstract

AbstractOnline recommendation systems process large amounts of information to make personalized recommendations. There has been some progress in research on incorporating knowledge graphs in reinforcement learning for recommendation; however, some challenges still remain. First, in these approaches, an agent cannot switch paths intelligently, because of which, the agent cannot cope with multi-entities and multi-relations in knowledge graphs. Second, these methods do not have predefined targets and thus cannot discover items that are closely related to user-interacted items and latent rich semantic relationships. Third, contemporary methods do not consider long rational paths in knowledge graphs. To address these problems, we propose a deep knowledge reinforcement learning (DKRL) framework, in which path-guided intelligent switching was implemented over knowledge graphs incorporating reinforcement learning; this model integrates predefined target and long logic paths over knowledge graphs for recommendation systems. Specifically, the designed novel path-based intelligent switching algorithm with predefined target enables an agent to switch paths intelligently among multi-entities and multi-relations over knowledge graphs. In addition, the weight of each path is calculated, and the agent switches paths between multiple entities according to path weights. Furthermore, the long logic path has better recommendation performance and interpretability. Extensive experiments with actual data demonstrate that our work improves upon existing methods.The experimental results indicated that DKRL improved the baselines of NDCG@10 by 3.7%, 9.3%, and 4.7%; of HR@10 by 12.39%, 20.8%, and 13.86%; of Prec@10 by 5.17%, 3.57%, 6.2%; of Recall@10 by 3.01%, 4.2%, and 3.37%. The DKRL model achieved more effective recommendation performance using several large benchmark data sets compared with other advanced methods.

Funder

Key and Technology in Henan

Publisher

Springer Science and Business Media LLC

Subject

Computational Mathematics,Engineering (miscellaneous),Information Systems,Artificial Intelligence

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3