Energy-saving service management technology of internet of things using edge computing and deep learning

Author:

Li Defeng,Lan Mingming,Hu Yuan

Abstract

AbstractThe purpose is to solve the problems of high transmission rate and low delay in the deployment of mobile edge computing network, ensure the security and effectiveness of the Internet of things (IoT), and save resources. Dynamic power management is adopted to control the working state transition of Edge Data Center (EDC) servers. A load prediction model based on long-short term memory (LSTM) is creatively proposed. The innovation of the model is to shut down the server in idle state or low utilization in EDC, consider user mobility and EDC location information, learn the global optimal dynamic timeout threshold strategy and N-policy through trial and error reinforcement learning method, reasonably control the working state switching of the server, and realize load prediction and analysis. The results show that the performance of AdaGrad optimization solver is the best when the feature dimension is 3, the number of LSTM network layers is 6, the time series length is 30–45, the batch size is 128, the training time is 788 s, the number of units is 250, and the number of times is 350. Compared with the traditional methods, the proposed load prediction model and power management mechanism improve the prediction accuracy by 4.21%. Compared with autoregressive integrated moving average (ARIMA) load prediction, the dynamic power management method of LSTM load prediction can reduce energy consumption by 12.5% and realize the balance between EDC system performance and energy consumption. The system can effectively meet the requirements of multi-access edge computing (MEC) for low delay, high bandwidth and high reliability, reduce unnecessary energy consumption and waste, and reduce the cost of MEC service providers in actual operation. This exploration has important reference value for promoting the energy-saving development of Internet-related industries.

Publisher

Springer Science and Business Media LLC

Subject

General Earth and Planetary Sciences,General Environmental Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3