Reversibly selective encryption for medical images based on coupled chaotic maps and steganography

Author:

Zhang Lina,Song XianhuaORCID,El-Latif Ahmed A. Abd,Zhao Yanfeng,Abd-El-Atty Bassem

Abstract

AbstractThe security and confidentiality of medical images are of utmost importance due to frequent issues such as leakage, theft, and tampering during transmission and storage, which seriously impact patient privacy. Traditional encryption techniques applied to entire images have proven to be ineffective in guaranteeing timely encryption and preserving the privacy of organ regions separated from the background. In response, this study proposes a specialized and efficient local image encryption algorithm for the medical field. The proposed encryption algorithm focuses on the regions of interest (ROI) within massive medical images. Initially, the Laplacian of Gaussian operator and the outer boundary tracking algorithm are employed to extract the binary image and achieve ROI edge extraction. Subsequently, the image is divided into ROI and ROB (regions outside ROI). The ROI is transformed into a row vector and rearranged using the Lorenz hyperchaotic system. The rearranged sequence is XOR with the random sequence generated by the Henon chaotic map. Next, the encrypted sequence is arranged according to the location of the ROI region and recombined with the unencrypted ROB to obtain the complete encrypted image. Finally, the least significant bit algorithm controlled by the key is used to embed binary image into the encrypted image to ensure lossless decryption of the medical images. Experimental verification demonstrates that the proposed selective encryption algorithm for massive medical images offers relatively ideal security and higher encryption efficiency. This algorithm addresses the privacy concerns and challenges faced in the medical field and contributes to the secure transmission and storage of massive medical images.

Funder

Heilongjiang Provincial Postdoctoral Science Foundation

Natural Science Foundation of Shandong Province

Publisher

Springer Science and Business Media LLC

Subject

Computational Mathematics,Engineering (miscellaneous),Information Systems,Artificial Intelligence

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3