The use of deep learning methods in low-dose computed tomography image reconstruction: a systematic review

Author:

Zhang Minghan,Gu SaiORCID,Shi Yuhui

Abstract

AbstractConventional reconstruction techniques, such as filtered back projection (FBP) and iterative reconstruction (IR), which have been utilised widely in the image reconstruction process of computed tomography (CT) are not suitable in the case of low-dose CT applications, because of the unsatisfying quality of the reconstructed image and inefficient reconstruction time. Therefore, as the demand for CT radiation dose reduction continues to increase, the use of artificial intelligence (AI) in image reconstruction has become a trend that attracts more and more attention. This systematic review examined various deep learning methods to determine their characteristics, availability, intended use and expected outputs concerning low-dose CT image reconstruction. Utilising the methodology of Kitchenham and Charter, we performed a systematic search of the literature from 2016 to 2021 in Springer, Science Direct, arXiv, PubMed, ACM, IEEE, and Scopus. This review showed that algorithms using deep learning technology are superior to traditional IR methods in noise suppression, artifact reduction and structure preservation, in terms of improving the image quality of low-dose reconstructed images. In conclusion, we provided an overview of the use of deep learning approaches in low-dose CT image reconstruction together with their benefits, limitations, and opportunities for improvement.

Publisher

Springer Science and Business Media LLC

Subject

General Earth and Planetary Sciences,General Environmental Science

Reference191 articles.

1. Kitchenham B, Charters S (2007) Guidelines for performing systematic literature reviews in software. Engineering 45:1051

2. Alla Takam C et al (2020) Spark Architecture for deep learning-based dose optimization in medical imaging. Inf Med Unlocked 19:100335

3. Arndt C et al (2020) Deep learning CT image reconstruction in clinical practice. Rofo. https://doi.org/10.1055/a-1248-2556

4. Shi J et al (2020) Applications of deep learning in medical imaging: a survey. J Image Graph 25(10):1953–1981

5. Singh R et al (2020) Artificial intelligence in image reconstruction: the change is here. Phys Med 79:113–125

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3