Multi-stage timetable rescheduling for high-speed railways: a dynamic programming approach with adaptive state generation

Author:

Feng Guoqi,Xu Peng,Cui DongliangORCID,Dai Xuewu,Liu Hui,Zhang Qi

Abstract

AbstractA dynamic programming (DP) approach with adaptive state generation and conflicts resolution is developed to address the timetable-rescheduling problem (TRP) at relatively lower computation costs. A multi-stage decision-making model is first developed to represent the timetable-rescheduling procedure in high-speed railways. Then, an adaptive state generation method by reordering the trains at each station is proposed to dynamically create the possible states according to the states of previous stages, such that the infeasible states can be removed and the search space is reduced. Then, conflicts are resolved by retiming the arrival and/or departure times of trains. Furthermore, the state transfer equation is built and Bellman equation is developed to derive the solution to minimize the total delay time (TT). A series of simulation experiments and a real-world case study are used to evaluate the performance of the proposed method. The simulation experiments indicate that the proposed method is able to find the optimal timetable with appropriate overtaking at right stations and reduce the total delay by 62.7% and 41.5% with respect to the First-Come-First-Serve (FCFS) and First-Schedule-First-Serve (FSFS) strategy that are widely used in practice. Comparing to the intelligent scheduling method (e.g., Ant Colony Optimization and Particle Swarm Optimization), similar objective performance can be achieved at a much lower cost of computation time, which make the proposed method more applicable to the TRP in daily operation of high-speed railway.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Natural Science Foundation of Liaoning Province

Science and technology research and development plan of State Railway Group

Publisher

Springer Science and Business Media LLC

Subject

General Earth and Planetary Sciences,General Environmental Science

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3