A faster dynamic convergency approach for self-organizing maps

Author:

Jamil AkhtarORCID,Hameed Alaa Ali,Orman Zeynep

Abstract

AbstractThis paper proposes a novel variable learning rate to address two main challenges of the conventional Self-Organizing Maps (SOM) termed VLRSOM: high accuracy with fast convergence and low topological error. We empirically showed that the proposed method exhibits faster convergence behavior. It is also more robust in topology preservation as it maintains an optimal topology until the end of the maximum iterations. Since the learning rate adaption and the misadjustment parameter depends on the calculated error, the VLRSOM will avoid the undesired results by exploiting the error response during the weight updation. Then the learning rate is updated adaptively after the random initialization at the beginning of the training process. Experimental results show that it eliminates the tradeoff between the rate of convergence and accuracy and maintains the data's topological relationship. Extensive experiments were conducted on different types of datasets to evaluate the performance of the proposed method. First, we experimented with synthetic data and handwritten digits. For each data set, two experiments with a different number of iterations (200 and 500) were performed to test the stability of the network. The proposed method was further evaluated using four benchmark data sets. These datasets include Balance, Wisconsin Breast, Dermatology, and Ionosphere. In addition, a comprehensive comparative analysis was performed between the proposed method and three other SOM techniques: conventional SOM, parameter-less self-organizing map (PLSOM2), and RA-SOM in terms of accuracy, quantization error (QE), and topology error (TE). The results indicated the proposed approach produced superior results to the other three methods.

Publisher

Springer Science and Business Media LLC

Subject

Computational Mathematics,Engineering (miscellaneous),Information Systems,Artificial Intelligence

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3