A federated approach for detecting the chest diseases using DenseNet for multi-label classification

Author:

Priya K. V.ORCID,Peter J. Dinesh

Abstract

AbstractMulti-label disease classification algorithms help to predict various chronic diseases at an early stage. Diverse deep neural networks are applied for multi-label classification problems to foresee multiple mutually non-exclusive classes or diseases. We propose a federated approach for detecting the chest diseases using DenseNets for better accuracy in prediction of various diseases. Images of chest X-ray from the Kaggle repository is used as the dataset in the proposed model. This new model is tested with both sample and full dataset of chest X-ray, and it outperforms existing models in terms of various evaluation metrics. We adopted transfer learning approach along with the pre-trained network from scratch to improve performance. For this, we have integrated DenseNet121 to our framework. DenseNets have a few focal points as they help to overcome vanishing gradient issues, boost up the feature propagation and reuse and also to reduce the number of parameters. Furthermore, gradCAMS are used as visualization methods to visualize the affected parts on chest X-ray. Henceforth, the proposed architecture will help the prediction of various diseases from a single chest X-ray and furthermore direct the doctors and specialists for taking timely decisions.

Publisher

Springer Science and Business Media LLC

Subject

General Earth and Planetary Sciences,General Environmental Science

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3