Diabetic retinopathy detection and classification using capsule networks

Author:

Kalyani G.ORCID,Janakiramaiah B.ORCID,Karuna A.ORCID,Prasad L. V. Narasimha

Abstract

AbstractNowadays, diabetic retinopathy is a prominent reason for blindness among the people who suffer from diabetes. Early and timely detection of this problem is critical for a good prognosis. An automated system for this purpose contains several phases like identification and classification of lesions in fundus images. Machine learning techniques based on manual extraction of features and automatic extraction of features with convolution neural network have been presented for diabetic retinopathy detection. The recent developments like capsule networks in deep learning and their significant success over traditional machine learning methods for a variety of applications inspired the researchers to apply them for diabetic retinopathy diagnosis. In this paper, a reformed capsule network is developed for the detection and classification of diabetic retinopathy. Using the convolution and primary capsule layer, the features are extracted from the fundus images and then using the class capsule layer and softmax layer the probability that the image belongs to a specific class is estimated. The efficiency of the proposed reformed network is validated concerning four performance measures by considering the Messidor dataset. The constructed capsule network attains an accuracy of 97.98%, 97.65%, 97.65%, and 98.64% on the healthy retina, stage 1, stage 2, and stage 3 fundus images.

Publisher

Springer Science and Business Media LLC

Subject

General Earth and Planetary Sciences,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3