A competitive swarm optimizer with probabilistic criteria for many-objective optimization problems

Author:

He ChaoORCID,Li MingORCID,Zhang CongxuanORCID,Chen HaoORCID,Li XinORCID,Li JunhuaORCID

Abstract

AbstractAlthough multiobjective particle swarm optimizers (MOPSOs) have performed well on multiobjective optimization problems (MOPs) in recent years, there are still several noticeable challenges. For example, the traditional particle swarm optimizers are incapable of correctly discriminating between the personal and global best particles in MOPs, possibly leading to the MOPSOs lacking sufficient selection pressure toward the true Pareto front (PF). In addition, some particles will be far from the PF after updating, this may lead to invalid search and weaken the convergence efficiency. To address the abovementioned issues, we propose a competitive swarm optimizer with probabilistic criteria for many-objective optimization problems (MaOPs). First, we exploit a probability estimation method to select the leaders via the probability space, which ensures the search direction to be correct. Second, we design a novel competition mechanism that uses winner pool instead of the global and personal best particles to guide the entire population toward the true PF. Third, we construct an environment selection scheme with the mixed probability criterion to maintain population diversity. Finally, we present a swarm update strategy to ensure that the next generation particles are valid and the invalid search is avoided. We employ various benchmark problems with 3–15 objectives to conduct a comprehensive comparison between the presented method and several state-of-the-art approaches. The comparison results demonstrate that the proposed method performs well in terms of searching efficiency and population diversity, and especially shows promising potential for large-scale multiobjective optimization problems.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Jiangxi Province

Advantage Subject Team Project of Jiangxi Province

Aeronautical Science Foundation of China

Outstanding Young Scientist Project of Jiangxi Province

Publisher

Springer Science and Business Media LLC

Subject

General Earth and Planetary Sciences,General Environmental Science

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3