Abstract
AbstractIn the case of new technology application, the cognitive radio network (CRN) addresses the bandwidth shortfall and the fixed spectrum problem. The method for CRN routing, however, often encounters issues with regard to road discovery, diversity of resources and mobility. In this paper, we present a reconfigurable CRN-based cross-layer routing protocol with the purpose of increasing routing performance and optimizing data transfer in reconfigurable networks. Recently developed spotted hyena optimizer (SHO) is used for tuning the hyperparameters of machine-learning models. The system produces a distributor built with a number of tasks, such as load balance, quarter sensing and the development path of machine learning. The proposed technique is sensitive to traffic and charges, as well as a series of other network metrics and interference (2bps/Hz/W average). The tests are performed with classic models that demonstrate the residual energy and strength of the resistant scalability and resource.
Publisher
Springer Science and Business Media LLC
Subject
General Earth and Planetary Sciences,General Environmental Science
Cited by
21 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献