Unsupervised learning of optical flow in a multi-frame dynamic environment using temporal dynamic modeling

Author:

Sun ZitangORCID,Luo Zhengbo,Nishida Shin’ya

Abstract

AbstractFor visual estimation of optical flow, which is crucial for various vision analyses, unsupervised learning by view synthesis has emerged as a promising alternative to supervised methods because the ground-truth flow is not readily available in many cases. However, unsupervised learning is likely to be unstable when pixel tracking is lost via occlusion and motion blur, or pixel correspondence is impaired by variations in image content and spatial structure over time. Recognizing that dynamic occlusions and object variations usually exhibit a smooth temporal transition in natural settings, we shifted our focus to model unsupervised learning optical flow from multi-frame sequences of such dynamic scenes. Specifically, we simulated various dynamic scenarios and occlusion phenomena based on Markov property, allowing the model to extract motion laws and thus gain performance in dynamic and occluded areas, which diverges from existing methods without considering temporal dynamics. In addition, we introduced a temporal dynamic model based on a well-designed spatial-temporal dual recurrent block, resulting in a lightweight model structure with fast inference speed. Assuming the temporal smoothness of optical flow, we used the prior motions of adjacent frames to supervise the occluded regions more reliably. Experiments on several optical flow benchmarks demonstrated the effectiveness of our method, as the performance is comparable to several state-of-the-art methods with advantages in memory and computational overhead.

Funder

Japan Science and Technology Agency

Japan Society for the Promotion of Science

Publisher

Springer Science and Business Media LLC

Subject

Computational Mathematics,Engineering (miscellaneous),Information Systems,Artificial Intelligence

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Indian TSR for partial occlusion using GDNN;Multimedia Tools and Applications;2023-07-27

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3