Based on neutrosophic fuzzy environment: a new development of FWZIC and FDOSM for benchmarking smart e-tourism applications

Author:

Alamoodi A. H.,Mohammed R. T.,Albahri O. S.ORCID,Qahtan Sarah,Zaidan A. A.,Alsattar H. A.,Albahri A. S.,Aickelin Uwe,Zaidan B. B.,Baqer M. J.,Jasim Ali Najm

Abstract

AbstractThe task of benchmarking smart e-tourism applications based on multiple smart key concept attributes is considered a multi-attribute decision-making (MADM) problem. Although the literature review has evaluated and benchmarked these applications, data ambiguity and vagueness continue to be unresolved issues. The robustness of the fuzzy decision by opinion score method (FDOSM) and fuzzy weighted with zero inconsistency (FWZIC) is proven compared with that of other MADM methods. Thus, this study extends FDOSM and FWZIC under a new fuzzy environment to address the mentioned issues whilst benchmarking the applications. The neutrosophic fuzzy set is used for this purpose because of its high ability to handle ambiguous and vague information comprehensively. Fundamentally, the proposed methodology comprises two phases. The first phase adopts and describes the decision matrices of the smart e-tourism applications. The second phase presents the proposed framework in two sections. In the first section, the weight of each attribute of smart e-tourism applications is calculated through the neutrosophic FWZIC (NS-FWZIC) method. The second section employs the weights determined by the NS-FWZIC method to benchmark all the applications per each category (tourism marketing and smart-based tourism recommendation system categories) through the neutrosophic FDOSM (NS-FDOSM). Findings reveal that: (1) the NS-FWZIC method effectively weights the applications’ attributes. Real time receives the highest importance weight (0.402), whereas augmented reality has the lowest weight (0.005). The remaining attributes are distributed in between. (2) In the context of group decision-making, NS-FDOSM is used to uniform the variation found in the individual benchmarking results of the applications across all categories. Systematic ranking, sensitivity analysis and comparison analysis assessments are used to evaluate the robustness of the proposed work. Finally, the limitations of this study are discussed along with several future directions.

Publisher

Springer Science and Business Media LLC

Subject

General Earth and Planetary Sciences,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3